Online

ISSN 1600-5368

Cheng-Xia Tan,^a* Jian-Ming Gu,^b De-Long Shen,^a Jian-Quan Weng^a and De-Fang Fan^c

^aCollege of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ^bAnalysis Center, Zhejiang University, Hangzhou 310028, People's Republic of China, and College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, People's Republic of China

Correspondence e-mail: tanchengxia@hzcnc.com

Key indicators

Single-crystal X-ray study T = 295 KMean σ (C–C) = 0.004 Å R factor = 0.037 wR factor = 0.097 Data-to-parameter ratio = 10.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Acta Crystallographica Section E **Structure Reports**

Bis[3-ethyl-1-methyl-5-(2-oxothiazolidin-3-ylcarbonyl)pyrazol-4-yl] disulfide

The title compound, C₂₀H₂₄N₆O₄S₄, has non-crystallographic twofold symmetry about the mid-point of the disulphide bond. Received 26 April 2004 Accepted 14 May 2004 Online 22 May 2004

Comment

Derivatives of pyrazolyl-heterocycles have high potential for biological activity and, as such, these derivatives have been widely used as pesticides and fungicides (Grenda et al., 1965). As a continuation of our work on the structure-activity relationship of pyrazolyl-heterocycle derivatives, we have obtained a colourless crystalline compound that was the product of the condensation reaction of 3-ethyl-1-methyl-5-(formoxyl chloride)pyrazol-4-yl disulfide and 2-thiazolidinone.

The structural identity of the product, (I) (Fig. 1 and Table 1), has been established crystallographically. The molecule has non-crystallographic twofold symmetry about the mid-point of the disulphide bond, so the residues lie on the same side of the central bond.

Experimental

To a chloroform solution (30 ml) containing 2-thiazolidinone (1.05 g, 10 mmol), prepared according to the procedure of Crawhall & Elliott (1952), and thiethylamine (1.2 g, 12 mmol) was added, dropwise, 3-ethyl-1-methyl-5-(formoxyl chloride)pyrazol-4-yl disulfide (3.0 g, 5.5 mmol; Miller et al., 1942). The mixture was stirred for 10 h, poured into ice-water and extracted with chloroform. The chloroform layer was washed with an aqueous solution of sodium carbonate, water and a saturated aqueous solution of sodium chloride. After drying over anhydrous sodium sulfate, the solution was concentrated under reduced pressure. The residue was then recrystallized from ethyl acetate to give colourless blocks (m.p. 384-385 K).

Crystal data

$C_{20}H_{24}N_6O_4S_4$	$D_x = 1.444 \text{ Mg m}^{-3}$
$M_r = 540.69$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 15829
a = 13.342(1) Å	reflections
b = 15.552(1) Å	$\theta = 1.3-27.4^{\circ}$
c = 12.0130 (8) Å	$\mu = 0.42 \text{ mm}^{-1}$
$\beta = 94.076 \ (2)^{\circ}$	T = 295 (1) K
$V = 2486.4 (3) \text{ Å}^3$	Block, colourless
Z = 4	$0.32 \times 0.26 \times 0.17 \text{ mm}$

© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

organic papers

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.809, \ T_{\max} = 0.931$
23 803 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F)] = 0.037$ $wR(F^2) = 0.097$ S = 1.013436 reflections 331 parameters

Table 1

Selected geometric parameters (Å, $^{\circ}$).

S1-S3	2.0962 (9)	N4-C13	1.327 (3)
S1-C4	1.741 (2)	N5-C15	1.335 (3)
S2-C9	1.787 (3)	N5-C16	1.452 (4)
S2-C10	1.756 (3)	N6-C17	1.381 (3)
S3-C14	1.736 (2)	N6-C18	1.464 (3)
S4-C19	1.803 (3)	N6-C20	1.399 (3)
S4-C20	1.751 (3)	C1-C2	1.437 (5)
O1-C7	1.203 (3)	C2-C3	1.496 (4)
O2-C10	1.197 (3)	C3-C4	1.399 (3)
O3-C17	1.214 (3)	C4-C5	1.385 (3)
O4-C20	1.201 (4)	C5-C7	1.471 (3)
N1-N2	1.341 (3)	C8-C9	1.499 (4)
N1-C3	1.329 (3)	C11-C12	1.504 (5)
N2-C5	1.350 (3)	C12-C13	1.496 (4)
N2-C6	1.463 (3)	C13-C14	1.402 (3)
N3-C7	1.388 (3)	C14-C15	1.389 (3)
N3-C8	1.455 (3)	C15-C17	1.482 (3)
N3-C10	1.394 (3)	C18-C19	1.505 (5)
N4-N5	1.361 (3)		
C4 = S1 = S3	101.83 (8)	$C6 - N^2 - C5$	1283(2)
$S_1 - S_3 - C_1 4$	100.95 (8)	$N_3 - C_7 - C_5$	117.5(2)
\$1-C4-C3	128.6 (2)	$C_{10} - N_{3} - C_{7}$	125.0(2)
S1-C4-C5	126.4(2)	C8-N3-C7	118.1(2)
C10-S2-C9	93.1 (1)	C10-N3-C8	115.0 (2)
S2-C9-C8	106.7(2)	N3-C8-C9	106.6 (2)
S2-C10-O2	124.0(2)	C13-N4-N5	105.8 (2)
S2-C10-N3	109.5 (2)	N4-N5-C15	111.8 (2)
S3-C14-C13	128.5 (2)	N4-N5-C16	119.0 (2)
S3-C14-C15	126.2 (2)	N4-C13-C14	110.4 (2)
C20-S4-C19	93.0 (2)	N4-C13-C12	122.4 (2)
S4-C19-C18	105.5 (2)	N5-C15-C14	106.8 (2)
S4-C20-O4	123.5 (2)	N5-C15-C17	121.3 (2)
S4-C20-N6	109.7(2)	C16-N5-C15	129.3 (2)
O1-C7-N3	120.2 (2)	N6-C17-C15	118.9 (2)
O1-C7-C5	122.2 (2)	C20-N6-C17	124.9 (2)
O2-C10-N3	126.5 (2)	C18-N6-C17	117.7 (2)
O3-C17-N6	119.7 (2)	C20-N6-C18	114.9 (2)
O3-C17-C15	121.3 (2)	N6-C18-C19	106.5 (2)
O4-C20-N6	126.7 (3)	C1-C2-C3	115.6 (3)
C3-N1-N2	105.6 (2)	C2-C3-C4	127.6 (2)
N1-N2-C5	112.2 (2)	C3-C4-C5	105.0 (2)
N1-N2-C6	119.6 (2)	C4-C5-C7	132.4 (2)
N1-C3-C2	121.5 (2)	C11-C12-C13	115.3 (3)
N1-C3-C4	110.9 (2)	C12-C13-C14	127.2 (2)
N2-C5-C4	106.3 (2)	C13-C14-C15	105.2 (2)
N2-C5-C7	121.0 (2)	C14-C15-C17	131.5 (2)

5666 independent reflections 3436 reflections with $F^2 > 2\sigma(F^2)$

H-atom parameters constrained $w = 1/[0.0013F_o^2 + \sigma(F_o^2)]/(4F_o^2)$

 $\begin{array}{l} R_{\rm int} = 0.039 \\ \theta_{\rm max} = 27.4^{\circ} \\ h = -16 \rightarrow 17 \\ k = -20 \rightarrow 20 \\ l = -15 \rightarrow 15 \end{array}$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.31 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

The structure of (I), showing 50% probability displacement ellipsoids.

H atoms were included in the final cycles of refinement in the riding-model approximation, with C-H = 0.96 and 0.97 Å for methyl and methylene H atoms, respectively, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku and Rigaku/MSC, 2000–2004); program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1999); program(s) used to refine structure: *CRYSTALS* (Watkin *et al.*, 1996); molecular graphics: *ORTEP*-3 (Farrugia, 1997); software used to prepare material for publication: *CrystalStructure*.

References

- Altomare, A., Burla, M., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Crawhall, J. C. & Elliott, D. F. (1952). J. Chem. Soc. pp. 3094-3102.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Grenda, V. J., Jones, R. E. & Gel, G. (1965). J. Org. Chem. 30, 259-261.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- Miller, E., Crossley, F. S. & Moore, M. L. (1942). J. Am. Chem. Soc. 64, 2322– 2323.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
- Rigaku & Rigaku/MSC (2000–2004). CrystalStructure. Verion 3.6.0. Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan, and Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA.
- Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, Oxford, England.